Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).

نویسندگان

  • Youngmee Jung
  • Min Sung Park
  • Jin Woo Lee
  • Young Ha Kim
  • Sang-Heon Kim
  • Soo Hyun Kim
چکیده

Compressive mechanical stimuli are crucial in regenerating cartilage with tissue engineering, which creates a need for scaffolds that can maintain their mechanical integrity while delivering mechanical signals to adherent cells during strain applications. With these goals in mind, the aim of this study was to develop a mechano-active scaffold that facilitated effective cartilaginous tissue formation under dynamic physiological environments. Using a gel-pressing method, we fabricated a biodegradable and highly-elastic scaffold from poly(L-lactide-co-epsilon-caprolactone) (PLCL; 5:5), with 85% porosity and a 300-500-microm pore size, and we compared it to control scaffolds made of rigid polylactide (PLA) or poly(lactide-co-glycolide) (PLGA). After tensile mechanical tests and recovery tests confirmed the elasticity of the PLCL scaffolds, we seeded them with rabbit chondrocytes, cultured them in vitro, and subcutaneously implanted them into nude mice for up to eight weeks. The PLCL scaffolds possessed a completely rubber-like elasticity, were easily twisted and bent, and exhibited an almost complete (over 97%) recovery from applied strain (up to 500%); the control PLA scaffolds showed little recovery. In vitro and in vivo accumulations of extracellular matrix on the cell-PLCL constructs demonstrated that they could not only sustain but also significantly enhance chondrogenic differentiation. Moreover, the mechanical stimulation of the dynamic in vivo environment promoted deposition of the chondral extracellular matrix onto the PLCL. In contrast, on the PLA scaffolds, most of the chondrocytes had de-differentiated and formed fibrous tissues. In a rabbit defect model, the groups treated with PLCL scaffolds exhibited significantly enhanced cartilage regeneration compared to groups harboring an empty control or PLGA scaffolds. These results indicated that the mechano-active PLCL scaffolds effectively delivered mechanical signals associated with biological environments to adherent chondrocytes, suggesting that these elastic PLCL scaffolds could successfully be used for cartilage regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration.

We newly designed super-elastic biodegradable scaffolds with longitudinally oriented microchannels for repair and regeneration of peripheral nerve defects. Four-armed poly(ε-caprolactone-co-D,L-lactide)s (P(CL-co-DLLA)s) were synthesized by ring-opening copolymerization of CL and DLLA from terminal hydroxyl groups of pentaerythritol, and acryloyl chloride was then reacted with the ends of the c...

متن کامل

Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.

The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are designed with computer software and built with either a poly(D,L-lactide)-based resin or a poly(D,...

متن کامل

Long-term viability of coronary artery smooth muscle cells on poly(L-lactide-co-epsilon-caprolactone) nanofibrous scaffold indicates its potential for blood vessel tissue engineering.

Biodegradable polymer nanofibres have been extensively studied as cell culture scaffolds in tissue engineering. However, long-term in vitro studies of cell-nanofibre interactions were rarely reported and successful organ regeneration using tissue engineering techniques may take months (e.g. blood vessel tissue engineering). Understanding the long-term interaction between cells and nanofibrous s...

متن کامل

In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds

Composite scaffolds were obtained by mixing various amounts (10, 30 and 50 weight % [wt %]) of borosilicate bioactive glass and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer. The composites were foamed using supercritical CO₂. An increase in the glass content led to a decrease in the pore size and density. In vitro dissolution/reaction test was performed in simulated body fluid. As a funct...

متن کامل

Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro.

The design of porous scaffolds able to promote and guide cell proliferation, colonization, and biosynthesis in three dimensions is key determinant in bone tissue engineering (bTE). The aim of this study was to assess the role of the micro-architecture of poly(epsilon-caprolactone) scaffolds in affecting human mesenchymal stem cells' (hMSCs) spatial organization, proliferation, and osteogenic di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 29 35  شماره 

صفحات  -

تاریخ انتشار 2008